0=-16x^2+40x+20

Simple and best practice solution for 0=-16x^2+40x+20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16x^2+40x+20 equation:



0=-16x^2+40x+20
We move all terms to the left:
0-(-16x^2+40x+20)=0
We add all the numbers together, and all the variables
-(-16x^2+40x+20)=0
We get rid of parentheses
16x^2-40x-20=0
a = 16; b = -40; c = -20;
Δ = b2-4ac
Δ = -402-4·16·(-20)
Δ = 2880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2880}=\sqrt{576*5}=\sqrt{576}*\sqrt{5}=24\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-24\sqrt{5}}{2*16}=\frac{40-24\sqrt{5}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+24\sqrt{5}}{2*16}=\frac{40+24\sqrt{5}}{32} $

See similar equations:

| 8x^2=12x+216 | | 1=-3+4p-2p-4 | | 2x^2+8x=20 | | 2/3(1/4+1/2x)-3/4=12 | | 13=2v-13 | | w+8=-19 | | 5m^2=180 | | 6(50-p)+p=115 | | 10y+4=2(5y+2) | | 4x-2=2x+6=50 | | 8.1x+100=65.61+10x | | 4x+x-5-6=11 | | k−6.2=24.8 | | 488x-93x+8342-928*8283-98233=53464 | | 72-0.5y=100-y | | -x+26=x+24 | | -2x+16=-x-5 | | 75x^2-30x=-3 | | 250-m=150 | | 3(5x-3)=6(4x-4) | | 256=69-w | | 1.8+5.5(-9-y/2)=27.6 | | -2w+9=3(w-7) | | 4x^2−x=17 | | 5y+5=3y+27 | | -3/2-1/3v=-8/7 | | 3n-5=26 | | -7/3u-6/5=6u-2/5 | | 7x-4=540 | | 3x^2-x-216=0 | | x-2/5=11/5 | | 7x-4=580 |

Equations solver categories